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Abstract

We show how a proof of Stampfli can be extended to prove that the operator
X > TX — XT defined on the Hilbert-Schmidt class, when T is an M-hyponormal

operator, has a closed range, if and only if o(7') is finite.
1. Introduction

Let H be a complex, separable, infinite dimensional Hilbert space,
let £(H) denote the algebra of all linear bounded operators on ‘H. The

Hilbert-Schmidt class, denoted by Cg(H), is a Hilbert space with the

| - [,- norm that arises from the inner product (X, Y) = tr(XY"), where
tr is the scalar-valued trace. For T € L(H), define Ay : L(H) — L(H) by
Ap(X)=TX - XT, and let o(T) denote the spectrum of 7. Let the range
of a linear operator S be denoted by R(S). For a normal operator N e

L(H), Anderson and Foias [1] proved that R(Ap ) is norm closed, if and
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only if o(N) is a finite set. In [3], Stampfli extended this result to the

class of hyponormal operators.

Theorem A ([3]). Let T € L(H) be a hyponormal operator. Then
R(A7) is norm closed, if and only if o(T) is finite.

In fact, Stampfli provided a proof of the “only if ” implication which
can be extended to a larger class of operators than hyponormal operators.

For an operator T € L(H), let c,,,(T) denote its normal approximate

point spectrum, that is, the set of those A € C for which there exists an

orthonormal sequence {¢,, }, in H such that

n

(T = Ry | + (T = 1) ] — O.
Define the class G(H) as follows:
G(H) =T e L(H)| 0,4p(T) is an infinite set }.

Some classes of hyponormal related operators, such as M-hyponormal

operators, i.e.,
m-|(T =)0 <|(T -2)|, Vo € H, and VA e C, for some m > 0,

have spectrum that is finite or they belong to G(?{). In particular, the
hyponormal operators (that is, 1-hyponormal) have this property.

In [2], Stampfli proved the following lemma which will be used in
Section 2.

Lemma B. Let T e G(H) and let {A,},_; be a sequence of distinct
points of 6,q,(T). Then for any sequence {e,},_; of positive numbers

converging to zero, there exists an orthonormal sequence {0, }, ; of

vectors in 'H such that
(T =2 )00l + (T = 2) bnll < €4, forn=1,2,..,and 1)

(0p, Top) =0, for k=1,...,n-1. (2)
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2. The Closedness of the Range of A(TZ.)

The operator Ap defined on the Hilbert-Schmidt class will be
denoted in the remainder of this note by A(Z), that 1s,
A(:,%) : Co(H) - Cy(H), A(:,%)(X) = TX - XT. Let HM (H) denote the set of
M-hyponormal operators.

Proposition 1. Let T ¢ HM(H). If o(T) is finite, then R(A(:%)) is
closed.

Proof. It is well known that an operator 7' e HM (H) with finite

spectrum is normal. Indeed, for the such an operator, the restriction to an

invariant subspace M belongs to HM (M). On the other hand, if T €
HM(H) with o(T) = {A}, then T = AI, (cf. [4]). Thus, we can write T =

Z?SlkiEi, where E;’s are the spectral projections.

Let X, and C be in Cq(H) such that ||A(%)(X,L)—C||2 — 0.
Therefore, Ap(X,)-C — 0 in the L(H) norm, and according to

Theorem A, there exists X° e £(H) such that C = TX° — X°T. For an
arbitrary X e L(H), let [X;;] be the block-matrix representation of X

relative to the decomposition H = Z?:Ol@ E;H. Thus

C

0
ij = (A - 7Lj)Xij,

1

for all i, j =1, ..., ng. This implies that each Xg. = WCU is a
S

Hilbert-Schmidt operator. Moreover, X 2 can be chosen 0, and thus X 0 ¢

Co(H).
Proposition 2. Let T € G(H). Then R(A(,l%)) is not closed.

Proof. We will use same notation and circle of ideas as in [2]. Let

{An 1,51 be sequence of distinct points of 6,,,,(T") so that A, — X(. Let
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I

N, = max{Ajq -A;[2|j=1,..,n},

and choose a non-increasing sequence {g,},5; so that 0 < g,
2 2.2 .

<|Apy1 —An|", n 21, and Zn>18nnn < . According to Lemma B, there
exists an orthonormal sequence {¢, }n21 that satisfies (1), (2). Let
Hy = V{0, |n > 1}, Hy = HY, and let §,, such that

T6, = u,0, +96, and §,, L ¢,, n > 1. 3
It results that

lup —A,| <€, and ||5,] < 2¢,, n 2 1. 4)

1
Define V:H —> H by Vo, =|Aj;q —%j[ 2041, n21, and Vg =0,
g € Hy. Let M, = V{(I)j |j=1,..,n} and let P, be the orthogonal
projection onto M, and define V, = VP,. A tedious calculation shows

that

Vil — 1) + 080 —Vipdj,  j<n,
AT(Vn)d)j = .
—Vné‘)j, j>n,

_1 . n,m
where v; = |Lj.; — 4|7 2. Denoting Ap(V, ) - Ap(V,,) by A7™, then for

n<m,

IA
s

0, J

—vj(Mj1 — 1))
A" = . (6))
+08j1 +(V,, =V, 85, n<j<m,

(Vm_Vn)Sj’ j>m.
Furthermore, from (3), it results that
8; L dj, dji1s djios - (6)

and from (4),
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[V,.8;l < 2nje;, for all j, n >1. (7

We will show next that |A%:™|, - 0, when m, n — . Thus, there

exists C e Cy(H) such that [|Ap(V,)-C|, — 0, thatis, C € R(A(:,%)).

First, we will show that |A7;"™ |H1 ||; — 0, when m, n - . Indeed,
. 5)
) 2 , 2
|45 1y, I3 = D505 =
i

m
= D v =1 Mg #0801 + (Vi = V)85

j=n+1
o0
D (AR AL
j=m+1
The first sum of the right hand side of the above can be majorized by
S 2 < 2
2 ) = vi(yen =1 Mg + 08P+ 20 D (Vi = V)35
j=n+1 Jj=n+l
Since ¢j; L 8;,1, we have
m 0
2 2 2
1457 L 15 < 2L Y @Flijar =5 * + 03185017+ D (Vi = V)3, 1.
Jj=n+1 j=n+l
According to (7),
|(Vin = V)8 | < 16n%e3,
and according to (4),
v]2~||6]-+1 ||2 < 4n?s?+1 < 41’]?8?,
and

|uj+1 —].,Lj|2 < (28] +|7\‘j+1 —}\,Jl)z < 88? +2|}\’j+1 —7\.]'|2,
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which implies

U]2'|],lj+1 —].,Lj|2 < 81’]?8? +2|7\.]'+1 —7\.]|

Therefore
o0 m
|45 [, 15 < e D) mied oo D Iy =2l
j=n+1 j=n+1

where ¢; and ¢y are some constants. After a careful review of the proof,
one can see that the sequence {i,} can be assumed to converge fast

enough (otherwise, choose a subsequence of it), more precisely

m
Zj:mlpujﬂ - Lj| = 0, when n, m — .

We show next that |A7™ |H2 ||§ — 0, when m, n — «. Indeed, we can

write

\4

Obviously, we can write 77¢, = 0,0, +y, with (y,, ¢,,) = 0, which

implies
On = <6”¢n *¥ns ¢n> = <T*¢n> ¢n> = <¢n’ T¢n> = <¢n’ Hndp + 8n> = M

x  — - - _ 0.4
and [y, ] = [(T" =1 0ull < I(T = 2) 0nll + 2 = Bal < 265

For an orthonormal basis {y; };5; of Hg, we will show that
Z"A’;mwi ||2 — 0, when n, m — .
1=1

For each i, write Ty; = Z:zla}(:)d)k + w; with w; € Hy. Thus

m m
Vi Tw; = Zag)Vm% + Vi, = Zag)vk%ﬂ-
k=1 k=1
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Since V,¥; =0, we have Ap(V,, Jw; = -V,,,T¥;, and consequently, for

n<m,

m
Ny = Y o

k=n+1

Since the sequence {¢;, } is orthonormal, we have

a2 = > Jal ok, ©)

k=n+1
Therefore
m . m 0 .
ZMAT v —Z S P v = D RO e,
i=1 k=n+1 k=n+1 i=1
For a fixed &,

DIl = Tv, o) = D 1w T @
i=1 i=1 i1

0

o0

_ ®)
v Tabn + 110 = D[ 1) < el S et
i=1

1=1
Consequently, Z;;"A’é:mwi I? < 42;::%10,% &2 — 0, for n, m — oo

The operator C is not in R(A(I%)) since, according to the proof of
Theorem A in [3], C ¢ R(A7p).

Theorem 3. Let T ¢ HM (H). Then R(A(:,%)) is closed, if and only if
o(T) is finite.

Proof. If T ¢ HM(H) and o(T) is finite, then according to

Proposition 1, R(A(I%)) is closed. Conversely, if T ¢ HM(H) has an
infinite spectrum, then there are infinitely many distinct points {A, },

that are either isolated points of the spectrum, in which case they are
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eigenvalues, or accumulation points of the spectrum, in which case they

are in the o,,(T). Since T € HY(H), we have 6,(T), 04p(T)

Opgp(T). Thus T e G(H), and according to Proposition 2, R(A(TZ,)) is not

closed.
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